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Abstract
This article proposes a hybrid framework for estimating dynamic origin–destination

(OD) demand that fully exploits the information available in license plate recognition

(LPR) data. A Bayesian path reconstruction model is initially developed to replen-

ish the lost information resulting from the recognition error and insufficient coverage

rate of the LPR system. The link flows, initial OD demand, left-turning flows, and

partial path flows are derived based on the reconstructed data. Subsequently, with the

information derived, a two-step ordinary least squares (OLS) OD estimation model is

formulated, which incorporates the output from the Bayesian model and coestimates

the OD demand and assignment matrix. The proposed framework is qualitatively val-

idated using the real-world LPR data collected from Langfang City, Hebei Province,

China, and is quantitatively validated using the synthesized simulation data for the

simplified road network of Langfang. The results show that the proposed model can

estimate OD demand distribution with a mean absolute percentage error (MAPE) of

about 30%. We also tested the model with different LPR coverage rates, with results

showing that an LPR coverage rate of over 50% is required to obtain reasonable results.

1 INTRODUCTION

Dynamic origin–destination (OD) demand, also known as

dynamic OD matrix, is a fundamental input in many

transportation assignment models for traffic management

(Ukkusuri, Mathew, & Waller, 2007; Wen, Cai et al., 2018),

congestion analysis (Adeli & Ghosh-Dastidar, 2004; Jiang

& Adeli, 2004a, 2004b), and intelligent transportation sys-

tem development (Adeli & Karim, 2005; Hooshdar & Adeli,

2004; Karim & Adeli, 2003). Traditionally, OD demand is cal-

culated based on survey and urban land use data; however,

the results of this calculation are rough and prone to mod-

eling errors. With the introduction of new traffic detection

technologies, many OD demand estimation methods that use

multiple sources of traffic detection data, including GNSS,

cellphone, and Bluetooth-based trajectory data, have become

© 2020 Computer-Aided Civil and Infrastructure Engineering

available (Cremer & Keller, 1981; Zhou & Mahmassani,

2006). One potential data source is license plate recognition

(LPR), a major type of automatic vehicle identification tech-

nology that has been widely deployed in urban and highway

transportation systems in recent years (Mo, Li, & Zhan, 2017;

Nakanishi & Western, 2005; J. Yang & Sun, 2015). Unlike

conventional fixed sensor detectors, an LPR system not only

records the time when a vehicle passes through a stop line

but also identifies the same vehicle that passes through multi-

ple intersections by recognizing its unique license plate. Com-

pared with decentralized probe data (e.g., GNSS and mobile

phone data), LPR data have a much higher penetration rate

and therefore offer a better representation of the traffic pat-

tern of road networks (Nigro, Cipriani, & del Giudice, 2018).

These unique features make LPR data a potential source for

OD estimation.
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Many studies have begun to examine dynamic OD demand

estimation over the past few decades. These studies mostly

rely on the time-dependent link counts collected by fixed

sensors on estimating dynamic OD (Cremer & Keller, 1981;

Larsson, Lundgren, & Peterson, 2010; Nihan & Davis, 1987;

Sherali & Park, 2001; Tavana & Mahmassani, 2001). How-

ever, given that unknown OD flows usually outnumber the

known link counts (Zhou & Mahmassani, 2006), these meth-

ods face an underdetermination problem. To solve such a

problem, initial OD demands (e.g., historical OD demand)

have been introduced to reduce the scope of local opti-

mal solutions (Bierlaire & Crittin, 2004; Cascetta, Inaudi,

& Marquis, 1993; Lundgren & Peterson, 2008; Stathopou-

los & Tsekeris, 2004). Therefore, the estimation accuracy

of this method is highly dependent on the selection of

initial OD demands (Cipriani, Florian, Mahut, & Nigro,

2011).

LPR-data–based dynamic OD estimation studies have also

employed the aforementioned framework. The difference is

that new information specific to LPR data has been added.

van der Zijpp (1997) proposed a Bayesian updating procedure

for dynamic OD matrix estimation by fusing the partial path

flow derived from LPR data with the traffic counts collected

from loop detector data. Dixon and Rilett (2002) applied the

Kalman filter method to estimate real-time OD demands. The

link volumes, OD split proportions, link choice proportions,

and travel times extracted from LPR data were used as inputs.

However, these two studies were limited to a closed network

(e.g., freeway network) from which route choice proportions

can be observed or directly derived. Therefore, their meth-

ods cannot be applied in an urban road network with complex

and unknown route choice behaviors. Zhou and Mahmassani

(2006) formulated a nonlinear ordinary least squares (OLS)

model to dynamically estimate OD demand distribution in

urban road networks. The historical OD demand observed link

flow, and link-to-link split fractions are embedded into the

multiobjective function. Given that link-to-link split fractions

cannot be directly observed, these variables are jointly esti-

mated with OD demand variables, thereby complicating the

model structure (Zhou & Mahmassani, 2006). These methods

essentially minimize the deviation between the information

derived from raw LPR data and the information estimated by

the proposed models. Additional information, including his-

torical OD demand, is also needed to obtain the expected solu-

tion, but the valuable underlying information in LPR data is

underutilized. Despite their advantages, LPR data suffer from

a low recognition rate resulting from erroneous, failed, and

missed detection (Mo et al., 2017). Therefore, directly using

raw LPR data may result in the omission of implied informa-

tion. Based on the inherent rules of transportation systems,

preprocessing LPR data can provide the information that was

lost as a result of low recognition and insufficient penetration

rates.

Another stream of research based on path flow recon-

struction has estimated OD demand by using preprocessed

LPR data. Castillo, Menéndez, and Jiménez (2008) proposed

a quadratic-programming–based path flow reconstruction

model by using LPR data. In this model, the unrecognized

vehicles in an LPR system are managed by using a statistical

method, and then the estimated path flow is aggregated to

estimate the OD flow. J. Yang and Sun (2015) proposed an

integrated vehicle path reconstruction method using LPR

data by combining the particle filter and path flow estimator

algorithms. The reconstructed path information is then used

to estimate path flow. LPR data are carefully processed in

the path reconstruction process based on artificial assump-

tions (e.g., links with large volumes are more likely to be

chosen). Rao, Wu, Xia, Ou, and Kluger (2018) extended

the above method to a large-scale network setting. They

initially reconstructed the path flow by using a particle filter

algorithm and then directly aggregated the reconstructed path

flow into the OD flow. Despite further utilizing LPR data,

these path-flow-reconstruction–based methods complicate

the OD demand estimation problem because the path flow is

disaggregated by the OD flow. Therefore, a greater number

of unknown variables exist during the path flow estimation.

These methods also often estimate the OD demand by simply

taking the sum of the corresponding path flows, which is

too arbitrary and rigid. If the path reconstruction precision is

lacking, especially in cases of low LPR recognition and cov-

erage rate, then the path can only be partially reconstructed,

thereby incurring losses in the original origin and destination

and resulting in serious OD estimation inaccuracies (H.

Yang, Iida, & Sasaki, 1991).

The aforementioned streams of LPR-data–based dynamic

OD estimation research have advantages and disadvantages.

On the one hand, the former estimates OD demand by using

elaborate mathematical models without exploiting LPR data

and usually requires additional information (e.g., historical

OD demand) to obtain reasonable results. On the other hand,

the latter thoroughly processes the LPR data to obtain addi-

tional path flow information, but the bridge that connects the

path and the OD flows is not well constructed.

This study aims to estimate the dynamic OD demand based

on LPR data by combining the advantages of the two afore-

mentioned methods. Specifically, we build a hybrid frame-

work for dynamic OD demand estimation that fully exploits

the information provided in LPR data. This framework does

not require the utilization of information sources other than

LPR data. A Bayesian path reconstruction model is initially

developed to replenish the information that is lost as a result

of the recognition error and insufficient penetration rate of

the LPR system. Based on the reconstructed data, we derive

the link flows, initial OD demand, left-turning, and par-

tial path flows. Afterward, a two-step OLS OD estimation

model is formulated by using all the derived information.
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The proposed framework is qualitatively validated by using

real-world LPR data collected from Langfang City, Hebei

Province, China, and is quantitatively validated by using syn-

thesized simulation data from a simplified road network of

Langfang. The results show that the proposed model can

estimate OD demand distribution with a mean absolute per-

centage error (MAPE) of about 30%. Two features distin-

guish this study from cutting-edge research in the literature:

a hybrid framework that combines optimization-based and

path-reconstruction–based OD estimation methods and deep

exploitation of LPR data that derives information equiva-

lent to a combination of traditional link count and trajectory

data. The methodological contribution of this study is twofold.

First, we propose a data-driven Bayesian path reconstruction

model that eliminates artificial assumption of people’s prefer-

ence. Second, we propose a two-step OLS model for estimat-

ing dynamic OD demand, which incorporates output informa-

tion from the Bayesian model and coestimates the assignment

matrix.

The rest of this article is organized as follows. Section 2

presents the proposed path reconstruction method. Section 3

shows the formulation of the proposed two-step OLS model.

Section 4 presents the validation design and the numerical

results. Section 5 presents the conclusions and discussions.

2 BAYESIAN PATH
RECONSTRUCTION

Typical LPR systems are used for red-light violation enforce-

ment. These systems use a camera to take pictures of vehicles

that pass through a stop line. In this way, information about

the passing timestamps, vehicle license plate numbers, and

occupied lanes can be obtained from LPR systems. However,

due to the limited recognition precision of LPR systems, the

license plate of some vehicles may be incorrectly recorded

as “none” if not successfully recognized. Given that those

vehicles that pass through LPR stations have a correspond-

ing record whether they have been successfully recognized or

not, the link volume can be (almost) accurately extracted from

the data set if this link is equipped with an LPR camera.

Nevertheless, LPR data show some limitations in provid-

ing vehicle trajectory information, which is important in OD

estimation (Rao et al., 2018). Vehicles may be erroneously

detected or completely undetected in LPR systems. Besides,

vehicles may pass through an intersection without an LPR

camera installed. These two scenarios make the vehicle trajec-

tories directly derived from raw LPR data incomplete. Using

these unclean data in OD estimation models can produce esti-

mation errors and affect model reliability (Yu, Yang, Wu, &

Ma, 2018). To solve this problem, several path reconstruc-

tion methods for LPR data have been proposed in recent years.

F I G U R E 1 Explanatory diagram of node definition

Castillo et al. (2008) proposed a path reconstruction method

based on Bayes’ theorem. However, this method uses only the

recognition rate of the LPR system and neglects other useful

information provided in the LPR data, including travel time

and vehicle-occupied lane. Feng, Sun, and Chen (2015) pro-

posed a particle filter–based vehicle trajectory reconstruction

framework using LPR and traffic count data. J. Yang and Sun

(2015) developed this method further by integrating a macro-

scopic path flow estimator and proposing a hybrid path recon-

struction model. However, both these methods need to update

particle weight based on several assumptions, such as “peo-

ple always prefer to take the shorter path,” “those links with

large volumes are more likely to be chosen,” and “vehicles

always arrive from an adjacent zone or with a higher traffic

flow” (Feng et al., 2015; J. Yang & Sun, 2015). Although

these assumptions are reasonable to some extent, we should

avoid using too many artificial assumptions and focus instead

on exploiting the value of the data in data-driven modeling.

In this study, we propose a data-driven Bayesian path

reconstruction method that attempts to fully utilize the infor-

mation in the LPR data and eliminate the man-made assump-

tion for people’s preference. This model is explained in detail

in the following sections.

2.1 Network nodes definition
We initially define a road network node in the context of

the LPR data–based model. In previous studies, a node is

defined as a real-world intersection. Meanwhile, we use a

finer-grained node definition by combining intersection ID

with arriving direction. Figure 1 presents an example of a

simple road network with four LPR system detection stations

installed at each intersection (labeled 1○, 2○, 3○, and 4○). At

each station, four cameras are set in front of the stop line to

capture the vehicles arriving from directions W, N, E, and

S. Note that this graph is only used for illustration purposes.
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Installing cameras that cover all directions is unnecessary for

the model. By taking intersection 1○ as an example, the four

nodes are defined as 1-W, 1-N, 1-E, and 1-S. Therefore, in this

simple four-intersection network, a total of 4 × 4 = 16 nodes

are defined. This fine-grained definition allows us to accu-

rately determine the topology relationship. For example, even

if a vehicle is recorded at 1-W and 4-N (with the other records

being lost), we can directly guess its true path as (1-W, 2-W,

4-N) with high confidence because only those vehicles pass-

ing through intersection 2○ can reach node 4-N. However, if

we use the previous rough node definition method that only

uses intersection ID (i.e., label nodes as 1○, 2○, 3○, and 4○ in

the network), then the true path of the vehicle with records 1○
and 4○ cannot be easily guessed because path ( 1○, 2○, 4○) and

path ( 1○, 3○, 4○) are possible candidates in the context of the

rough node definition.

Based on the new definition, nodes 1-W and 2-W are topo-

logically continuous, whereas nodes 1-W and 2-N are not

because a vehicle cannot move directly from 1-W to 2-N.

2.2 Continuous node judgment
In this subsection, we describe how we judge whether the

chronological nodes extracted from raw LPR data are truly

continuous. Extracting continuous nodes is the first step in

the path reconstruction procedure, and the remaining discon-

tinuous nodes are used as inputs for the path reconstruction

model. The following criteria are used for the judgment:

• Criterion 1: The two recorded nodes must be topologically

continuous.

• Criterion 2: The difference between the two recorded time-

stamps (i.e., the recorded travel time between the two

nodes) must fall within the 95% confidence interval of the

link travel time distribution.

The first criterion is negligible, as set out in the definition

of topological continuity elaborated on in Section 2.1. For

the second criterion, some vehicles may have more than one

trip during a day and may park for a long time between two

topologically continuous nodes. Thus, the second criterion

is used to separate the topologically continuous but time-

discontinuous trajectories into multiple trips. The confidence

interval–based criterion is more reliable than the fixed-value

threshold-based criteria. The link travel time distribution can

be calculated by using the vehicle travel time information

from LPR data. The kernel density estimation method

(Pedregosa et al., 2011) is used to estimate the unknown

distribution and to calculate the confidence level. Given that

the link travel time distribution varies across time, the above

procedure is conducted within predefined time intervals.

Time interval is treated as the computational unit for dynamic

OD estimation. A time span of 15 minutes, 30 minutes, or 1

hour is often used. In this study, a time span of 30 minutes is

used to represent the length of a time interval.

After judging the continuous nodes, we obtain many raw

partial trajectories by simply connecting these nodes. Note

that some derived trajectories may only have one node. After-

ward, we reconstruct the path between two raw partial trajec-

tories or conclusively divide them into two separate trips.

2.3 Path reconstruction
As mentioned above, the discontinuous nodes are used as

inputs for the path reconstruction model. For a specific vehi-

cle 𝑉 , we denote the raw partial trajectories obtained in Sec-

tion 2.2 as 𝑅𝑉partial = {𝑅𝑉 ,1partial, 𝑅
𝑉 ,2
partial,⋯ , 𝑅

𝑉 ,𝑛𝑝

partial}. The tra-

jectory ID 1, 2, ⋯ , 𝑛𝑝 is sorted by time. For trajectories

𝑅
𝑉 ,𝑘

partial and 𝑅
𝑉 ,𝑘+1
partial , let 𝑁−

𝑉 ,𝑘
be the last node of 𝑅

𝑉 ,𝑘

partial and

𝑁+
𝑉 ,𝑘+1 be the first node of 𝑅

𝑉 ,𝑘+1
partial . Then, 𝑁−

𝑉 ,𝑘
and 𝑁+

𝑉 ,𝑘+1
are the two discontinuous nodes that will be fed to the path

reconstruction model. Discontinuous nodes refer to two nodes

that fail to satisfy either Criterion 1 or 2.

𝑅𝑉 ,𝑘 = {𝑅𝑉 ,𝑘1 , 𝑅
𝑉 ,𝑘

2 ,⋯ , 𝑅
𝑉 ,𝑘
𝑛𝑐

} denotes the possible path

candidates between 𝑁−
𝑉 ,𝑘

and 𝑁+
𝑉 ,𝑘+1. 𝑅𝑉 ,𝑘 is the union of

existing paths and efficient paths. Existing paths refer to all

raw partial trajectories that connect 𝑁−
𝑉 ,𝑘

with 𝑁+
𝑉 ,𝑘+1 as

obtained in Section 2.2. Efficient paths were defined by Dial

(1971): A path is considered efficient if every link in this path

has its initial node located closer to the path origin than to the

final node of the link (i.e., a path that does not backtrack).

The inefficient paths (e.g., vehicles turning away from the

destination), if existing, will be included in the existing paths

set. The number of candidate paths can be extremely large in

an urban road network when 𝑁−
𝑉 ,𝑘

is located far away from

𝑁+
𝑉 ,𝑘+1, thereby incurring a high computation cost. Accord-

ing to Parry and Hazelton (2012), using more than six or seven

routes for any given OD pair is unusual. Therefore, to improve

efficiency, when the number of efficient paths exceeds six, we

choose only the shortest six paths as candidates. The results of

our numerical test reveal that the number of path candidates

from the efficiency path slightly influences the reconstruction

accuracy. Given that having too many path candidates may

reduce the accuracy, people can adjust this value as appro-

priate. Future studies may explore for the optimal number of

path candidates. The purpose of our work is to calculate the

posterior probability for each candidate to be the real path

conditional on the information observed in the LPR data. For

the Bayesian reconstruction, we use three types of informa-

tion extracted from LPR data, namely, the detected nodes

set 𝑁
𝑉 ,𝑘

𝑑
= {𝑁−

𝑉 ,𝑘
, 𝑁+
𝑉 ,𝑘+1}, the travel time 𝑇𝑇𝑉 ,𝑘 between

𝑁−
𝑉 ,𝑘

and𝑁+
𝑉 ,𝑘+1, and the lane 𝐿𝑉 ,𝑘 occupied by the detected

vehicle 𝑉 recorded in𝑁−
𝑉 ,𝑘

. These three types of information

affect the posterior probability that 𝑅
𝑉 ,𝑘

𝑖
∈ 𝑅𝑉 ,𝑘 is the real

path. Then, the posterior probability that 𝑅
𝑉 ,𝑘

𝑖
is the real path
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can be formulated as 𝑃 (𝑅𝑉 ,𝑘
𝑖

| 𝑁𝑉 ,𝑘
𝑑
, 𝑇 𝑇𝑉 ,𝑘, 𝐿𝑉 ,𝑘). Based on

Bayes’ theorem, we expand this expression as

𝑃
(
𝑅
𝑉 ,𝑘

𝑖
|𝑁𝑉 ,𝑘
𝑑
, 𝑇 𝑇𝑉 ,𝑘, 𝐿𝑉 ,𝑘

)
=

𝑃
(
𝑁
𝑉 ,𝑘

𝑑
|𝑅𝑉 ,𝑘
𝑖
, 𝑇 𝑇𝑉 ,𝑘, 𝐿𝑉 ,𝑘

)
⋅ 𝑃

(
𝑅
𝑉 ,𝑘

𝑖
|𝑇𝑇𝑉 ,𝑘, 𝐿𝑉 ,𝑘)∑𝑛𝑐

𝑗=1 𝑃
(
𝑁
𝑉 ,𝑘

𝑑
|𝑅𝑉 ,𝑘
𝑗
, 𝑇 𝑇𝑉 ,𝑘, 𝐿𝑉 ,𝑘

)
⋅ 𝑃

(
𝑅
𝑉 ,𝑘

𝑗
|𝑇𝑇𝑉 ,𝑘, 𝐿𝑉 ,𝑘)

(1)

where 𝑛𝑐 is the number of path candidates. Given that

the detected nodes 𝑁
𝑉 ,𝑘

𝑑
are determined only by the path

chosen by vehicle 𝑉 and the recognition rate of LPR

devices, 𝑇𝑇𝑉 ,𝑘 and 𝐿𝑉 ,𝑘 have no effect on these nodes.

Therefore, 𝑃 (𝑁𝑉 ,𝑘
𝑑

|𝑅𝑉 ,𝑘
𝑖
, 𝑇 𝑇𝑉 ,𝑘, 𝐿𝑉 ,𝑘) can be simplified to

𝑃 (𝑁𝑉 ,𝑘
𝑑

|𝑅𝑉 ,𝑘
𝑖

). 𝑃 (𝑁𝑉 ,𝑘
𝑑

|𝑅𝑉 ,𝑘
𝑖

) must be calculated by using

the recognition rate of LPR stations. Given that the recog-

nition rate varies across time due to the changes in traffic

lights and other elements, we must find the time interval 𝜏

when 𝑁−
𝑉 ,𝑘

is recorded, and then assume that the follow-

ing time-dependent computing procedures all lie within this

time interval. For the quantitative analysis, we assume that

recognition error is independent between users and between

LPR stations (Castillo et al., 2008). Based on this assumption,

𝑃 (𝑁𝑉 ,𝑘
𝑑

|𝑅𝑉 ,𝑘
𝑖

) can be rewritten as

𝑃

(
𝑁
𝑉 ,𝑘

𝑑
|𝑅𝑉 ,𝑘
𝑖

)
=Pre,𝜏

(
𝑁−
𝑉 ,𝑘

)
⋅ 𝑃re,𝜏

(
𝑁+
𝑉 ,𝑘+1

)
⋅

𝑛𝑢∏
𝑚=1

(
1 − 𝑃re,𝜏

(
𝑁
𝑅
𝑉 ,𝑘

𝑖
,(𝑚)

𝑢

))
(2)

where 𝑃re,𝜏 () is the LPR recognition rate of the corresponding

nodes within time interval 𝜏. This parameter can be directly

calculated by dividing the number of recognized vehicles by

the number of total vehicles passing the node in time interval

𝜏. Meanwhile, 𝑁
𝑅
𝑉 ,𝑘

𝑖
𝑢 = {𝑁𝑅

𝑉 ,𝑘

𝑖
,(1)

𝑢 ,𝑁
𝑅
𝑉 ,𝑘

𝑖
,(2)

𝑢 ,⋯ , 𝑁
𝑅
𝑉 ,𝑘

𝑖
,(𝑛𝑢)

𝑢 }
denotes the set of unrecognized nodes of path 𝑅

𝑉 ,𝑘

𝑖
(i.e., all

nodes in path𝑅
𝑉 ,𝑘

𝑖
, except for𝑁−

𝑉 ,𝑘
and𝑁+

𝑉 ,𝑘+1). Equation (2)

reveals the probability for vehicle 𝑉 to be recorded in node

𝑁
𝑉 ,𝑘

𝑑
and not recorded in node𝑁

𝑅
𝑉 ,𝑘

𝑖
𝑢 .

In Equation (1), 𝑃 (𝑅𝑉 ,𝑘
𝑖

|𝑇𝑇𝑉 ,𝑘, 𝐿𝑉 ,𝑘) can be expanded as

follows based on Bayes’ theorem:

𝑃
(
𝑅
𝑉 ,𝑘

𝑖
|𝑇𝑇𝑉 ,𝑘, 𝐿𝑉 ,𝑘)

=
𝑃
(
𝑇𝑇𝑉 ,𝑘|𝑅𝑉 ,𝑘𝑖 , 𝐿𝑉 ,𝑘) ⋅ 𝑃 (

𝑅
𝑉 ,𝑘

𝑖
|𝐿𝑉 ,𝑘)∑𝑛𝑐

𝑗=1 𝑃
(
𝑇𝑇𝑉 ,𝑘|𝑅𝑉 ,𝑘𝑗 , 𝐿𝑉 ,𝑘) ⋅ 𝑃

(
𝑅
𝑉 ,𝑘

𝑗
|𝐿𝑉 ,𝑘) (3)

where 𝑃 (𝑅𝑉 ,𝑘
𝑖

|𝐿𝑉 ,𝑘) indicates the probability of vehicle 𝑉

choosing 𝑅
𝑉 ,𝑘

𝑖
conditional on leaving𝑁−

𝑉 ,𝑘
in lane 𝐿𝑉 ,𝑘. The

lane affects the probability because drivers can switch to a

suitable lane in their upcoming turns. For example, if vehicle

𝑉 anticipates turning left after passing 𝑁−
𝑉 ,𝑘

, then this vehi-

cle has a high probability of switching to the leftmost lane in

advance. 𝑃 (𝑅𝑉 ,𝑘
𝑖

|𝐿𝑉 ,𝑘) can be expanded as

𝑃

(
𝑅
𝑉 ,𝑘

𝑖
|𝐿𝑉 ,𝑘) =

𝑃

(
𝐿𝑉 ,𝑘|𝑅𝑉 ,𝑘𝑖 )

⋅ 𝑃
(
𝑅
𝑉 ,𝑘

𝑖

)
∑𝑛𝑐
𝑗=1 𝑃

(
𝐿𝑉 ,𝑘|𝑅𝑉 ,𝑘𝑗 )

⋅ 𝑃
(
𝑅
𝑉 ,𝑘

𝑗

) (4)

where 𝑃 (𝑅𝑉 ,𝑘
𝑖

) denotes the prior probability for people to use

𝑅
𝑉 ,𝑘

𝑖
, and 𝑃 (𝐿𝑉 ,𝑘|𝑅𝑉 ,𝑘𝑖 ) denotes the probability for vehicles

with trajectories𝑅
𝑉 ,𝑘

𝑖
to leave𝑁−

𝑉 ,𝑘
in lane𝐿𝑉 ,𝑘. These prob-

abilities can be calculated as follows by using raw trajectory

data:

𝑃

(
𝑅
𝑉 ,𝑘

𝑖

)
=

𝛼
𝑅
𝑉 ,𝑘

𝑖∑𝑛𝑐
𝑗=1 𝛼𝑅𝑉 ,𝑘

𝑗

and (5)

𝑃

(
𝐿𝑉 ,𝑘|𝑅𝑉 ,𝑘𝑖 )

=
𝛼
𝑅
𝑉 ,𝑘

𝑖
,𝐿𝑉 ,𝑘

𝛼
𝑅
𝑉 ,𝑘

𝑖

(6)

where 𝛼
𝑅
𝑉 ,𝑘

𝑖

is the number of vehicles using path 𝑅
𝑉 ,𝑘

𝑖
, and

𝛼
𝑅
𝑉 ,𝑘

𝑖
,𝐿𝑉 ,𝑘

is the number vehicles with raw trajectory 𝑅
𝑉 ,𝑘

𝑖

that leave 𝑁−
𝑉 ,𝑘

in lane 𝐿𝑉 ,𝑘. These variables can be directly

counted by using raw trajectory data. Therefore, Equations (5)

and (6) yield

𝑃

(
𝑅
𝑉 ,𝑘

𝑖
|𝐿𝑉 ,𝑘) =

𝛼
𝑅
𝑉 ,𝑘

𝑖
,𝐿𝑉 ,𝑘∑𝑛𝑐

𝑗=1 𝛼𝑅𝑉 ,𝑘
𝑗
,𝐿𝑉 ,𝑘

(7)

Before calculating Equation (1), the only remaining step

is to calculate 𝑃 (𝑇𝑇𝑉 ,𝑘|𝑅𝑉 ,𝑘𝑖 , 𝐿𝑉 ,𝑘). 𝐿𝑉 ,𝑘 has almost no

effect on travel time 𝑇𝑇𝑉 ,𝑘 when the path 𝑅
𝑉 ,𝑘

𝑖
is deter-

mined. Therefore, 𝑃 (𝑇𝑇𝑉 ,𝑘|𝑅𝑉 ,𝑘𝑖 , 𝐿𝑉 ,𝑘) can be simplified to

𝑃 (𝑇𝑇𝑉 ,𝑘|𝑅𝑉 ,𝑘𝑖 ), which can be directly derived when the travel

time distribution of 𝑅
𝑉 ,𝑘

𝑖
is known. Given that travel time

may vary within the same day, its distribution must be cal-

culated over the time interval 𝜏. A simple method for calcu-

lating such distribution is to extract all corresponding path

travel time samples from raw trajectories and then estimate

the distribution by using a kernel density estimation method

(Pedregosa et al., 2011). However, according to the numer-

ical test results, the number of eligible trajectories is small

and insufficient for estimating the distribution. Therefore, we

calculate the path travel time by adding the travel time of all

links in 𝑅
𝑉 ,𝑘

𝑖
via Monte Carlo sampling. The link travel time

distribution is presented in Section 2.2. Only the travel time

distribution in time interval 𝜏 is used. We sample the travel

time of each link along the path and then compute their sum

to obtain a path travel time sample. This process is performed

repeatedly until enough samples are generated for estimating
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the travel time distribution of 𝑅
𝑉 ,𝑘

𝑖
(based on the kernel den-

sity method).

However, the link travel time samples are not available from

the LPR data when no LPR devices are installed on this link.

In this case, we propose a link travel time estimation method to

generate synthesized travel time samples for these unequipped
links. The proposed method is described in Appendix A.

After this procedure, the travel time samples of all links

become available and can be used to estimate the path

travel time distribution by using the aforementioned Monte

Carlo and kernel density estimation methods. Therefore,

𝑃 (𝑇𝑇𝑉 ,𝑘|𝑅𝑉 ,𝑘𝑖 ) can be obtained by directly calculating the

probability when the travel time is equal to 𝑇𝑇𝑉 ,𝑘 based

on the derived path travel time distribution. The value of

𝑃 (𝑇𝑇𝑉 ,𝑘|𝑅𝑉 ,𝑘𝑖 ) will never be zero in the context of kernel

density estimation; this phenomenon may lead to a reluc-
tant path reconstruction when none of the path candidates

should be considered as the real path. To avoid this unreason-

able reconstruction, we artificially set 𝑃 (𝑇𝑇𝑉 ,𝑘|𝑅𝑉 ,𝑘𝑖 ) to zero

when 𝑇𝑇𝑉 ,𝑘 does not lie within the 95% confidence interval

of the derived path travel time distribution.

So far, Equation (1) can be divided into different parts that

are calculated individually. The reconstructed path between

discontinuous nodes 𝑁−
𝑉 ,𝑘

and 𝑁+
𝑉 ,𝑘+1 will be the one with

the highest probability as shown below:

𝑅𝑉 ,𝑘re = argmax
𝑅
𝑉 ,𝑘

𝑗
∈𝑅𝑉 ,𝑘

𝑃

(
𝑅
𝑉 ,𝑘

𝑗
|𝑁𝑉 ,𝑘
𝑑
, 𝑇 𝑇𝑉 ,𝑘, 𝐿𝑉 ,𝑘

)
(8)

If 𝑅
𝑉 ,𝑘
re is not null, then we can successfully reconstruct

the path between 𝑁−
𝑉 ,𝑘

and 𝑁+
𝑉 ,𝑘+1. The reconstructed path

is then connected with the raw trajectory before𝑁−
𝑉 ,𝑘

and the

raw trajectory after𝑁+
𝑉 ,𝑘+1. The newly connected path is seen

as the reconstructed trajectory before 𝑁+
𝑉 ,𝑘+1. If 𝑅

𝑉 ,𝑘
re is null

(i.e., max
𝑅
𝑉 ,𝑘

𝑖
∈𝑅𝑉 ,𝑘 𝑃 (𝑅

𝑉 ,𝑘

𝑖
|𝑁𝑉 ,𝑘
𝑑
, 𝑇 𝑇𝑉 ,𝑘, 𝐿𝑉 ,𝑘) = 0), then we

treat the trajectory before𝑁−
𝑉 ,𝑘

and the trajectory after𝑁+
𝑉 ,𝑘+1

as two different trips to identify the stops along a chain of trips

in LPR data.

Algorithm 1. Bayesian path reconstruction model

A special case must be considered here: Calculating

𝑃 (𝑅𝑉 ,𝑘
𝑖

|𝐿𝑉 ,𝑘) necessitates counting the number of vehicles

with raw trajectories 𝑅
𝑉 ,𝑘

𝑖
. When 𝑅

𝑉 ,𝑘

𝑖
is not an existing raw

trajectory (which may occur when 𝑅
𝑉 ,𝑘

𝑖
contains unequipped

links), 𝛼
𝑅
𝑉 ,𝑘

𝑖
,𝐿𝑉 ,𝑘

cannot be obtained given the lack of any

record. In this case, Equation (7) cannot be calculated. For

this special case, we need to adjust the calculation method for

𝑃 (𝑅𝑉 ,𝑘
𝑖

|𝐿𝑉 ,𝑘). Assume that 𝑃 (𝑅𝑉 ,𝑘
𝑖

|𝐿𝑉 ,𝑘) ∝ 𝑃 (𝑅𝑉 ,𝑘𝑖 ), which

neglects the impact of 𝐿𝑉 ,𝑘. Although this assumption is

not realistic, as mentioned above, there is no data that we

can use to account for the effect of 𝐿𝑉 ,𝑘 in this situation.

𝑃 (𝑅𝑉 ,𝑘
𝑖

) is the prior probability of people using path 𝑅
𝑉 ,𝑘

𝑖
.

We assume it is proportional to the path capacity (assum-

ing the prior probability is a commonly used technique in

Bayesian inference problem). As path capacity is determined

by the minimum capacity of the links, this leads to 𝑃 (𝑅𝑉 ,𝑘
𝑖

) ∝
minlink 𝑎 ∈ 𝑅𝑉 ,𝑘

𝑖

{ 1
𝜑𝑎
}, where 𝜑𝑎 is a parameter inversely pro-

portional to the capacity of link 𝑎, which is calculated in

Appendix A. Therefore, in the case where 𝑅
𝑉 ,𝑘

𝑖
contains

unequipped links, 𝑃 (𝑅𝑉 ,𝑘
𝑖

|𝐿𝑉 ,𝑘) can be rewritten as

𝑃

(
𝑅
𝑉 ,𝑘

𝑖
|𝐿𝑉 ,𝑘) =

min
link 𝑎 ∈ 𝑅𝑉 ,𝑘

𝑖

{
1∕𝜑𝑎

}
∑𝑛𝑐
𝑗=1 min

link 𝑎 ∈ 𝑅𝑉 ,𝑘
𝑗

{
1∕𝜑𝑎

} (9)

The aforementioned path reconstruction model is summa-

rized in Algorithm 1.

Unlike the methods employed in previous studies, the

proposed Bayesian path reconstruction model does not rely

on artificial assumptions, such as “people always prefer

the shorter path.” Instead, people’s preferences are directly

embedded into this model based on their choices. For exam-

ple, Equations (5) to (7) capture the people’s preferences

according to their path choices. These equations may generate

higher probabilities for shorter paths that correspond to arti-

ficial assumptions. However, these equations also capture the

special case where shorter paths are not preferable. Given that

we consider different LPR device installation scenarios (e.g.,

equipped and unequipped links), the proposed model is adap-

tive to different LPR device coverage rates. However, LPR

systems are expected to have a high coverage rate given the

purely data-driven property of the proposed model.

3 DYNAMIC OD DEMAND
ESTIMATION

3.1 Formulation of objective function
Before formally describing the dynamic OD estimation

model, we summarize the known information to formulate

the objective function. We extract four types of information

from the LPR data, including link flow, initial OD matrix,

left-turning flow, and partial path flow. Our objective function
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attempts to minimize the difference between the observed

(obtained from LPR data) and estimated information.

1. Link flow

The time-dependent link flow is a typical real-world informa-

tion derived from LPR data. This flow can be directly obtained

by counting the number of recognized and unrecognized vehi-

cles passing through an LPR station. 𝑣∗
𝜏,𝑎

denotes the observed

flow of link 𝑎 in time interval 𝜏, 𝑣𝜏,𝑎 denotes the correspond-

ing estimated link flow, and
∑
𝜏

∑
𝑎 (𝑣∗𝜏,𝑎 − 𝑣𝜏,𝑎)

2 can be an

item of the objective function in the following OLS model.

2. Initial OD matrix

The initial OD matrix is crucial in OD estimation as revealed

in previous studies (Cascetta et al., 1993; Cipriani et al.,

2011; Dixon & Rilett, 2005). The most commonly used ini-

tial OD demand is the historical OD obtained from travel sur-

vey data (Ashok & Ben-Akiva, 1993; Zhou & Mahmassani,

2006). However, historical OD distribution data for the study

area, which is a newly developing third-tier city, are unavail-

able. Even if such data exist, some huge differences may be

observed between these data and the current OD distribution

given the high speed of motorization and urbanization in the

study area. Therefore, we derive a new source of initial OD

matrix from the LPR data. After reconstructing the vehicle

paths in Section 2, we can leverage these paths to derive an

initial OD demand. Let 𝑞𝑟𝑠
𝜏

be the initial OD flow between ori-

gin 𝑟 and destination 𝑠 within time interval 𝜏, and let 𝑁𝑟𝑠
𝜏

be

the number of reconstructed paths starting from 𝑟 and ending

at 𝑠 within the same interval. We have 𝑞𝑟𝑠
𝜏

= 𝛼𝜏 ⋅𝑁𝑟𝑠𝜏 , where

𝛼𝜏 is a scaling factor that considers the unreconstructed paths.

𝛼𝜏 can be approximated by 𝛼𝜏 = 𝑣all𝜏 ∕𝑣
part
𝜏 , where 𝑣

part
𝜏 is the

sum of all link flows calculated from the reconstructed paths,

and 𝑣all
𝜏

is the sum of all observed link flows. This equation

is similar to the path-flow-reconstruction–based OD estima-

tion method. Therefore,
∑
𝜏

∑
𝑟,𝑠 (𝑞𝑟𝑠𝜏 − 𝑞𝑟𝑠

𝜏
)2 can be used as

another item in the objective function.

3. Left-turning flow

Raw LPR data can provide information about the lane being

occupied by vehicles at each equipped intersection. Theoret-

ically, the turning flow (left, right, and straight) of links can

also be obtained if a lane is used for only one type of turn-

ing behavior. However, for many intersections, right-turning

and straight-through lanes are often the same, thereby mak-

ing the right-turning flow indistinguishable from the straight-

through flow. For left-turning vehicles, specific left-turning

lanes are generally used. Therefore, the left-turning flow pro-

vided by LPR data are close to the ground truth values. Even if

some vehicles violate the traffic rules, this small proportion of

errors will not affect the results of the entire model. It is worth

noting that the above analysis is based on a typical scenario

in Chinese cities. One important factor to be considered when

choosing turning flow is its distinguishability, that is, whether

or not this flow can be inferred from the occupied lane. Let

the observed left-turning flow of link 𝑎 within time interval 𝜏

be 𝐿𝑇 ∗
𝜏,𝑎

, and let 𝐿𝑇𝜏,𝑎 be the corresponding estimated left-

turning link flow. The item of left-turning flow in the objective

function can thus be expressed as
∑
𝜏

∑
𝑎 (𝐿𝑇 ∗𝜏,𝑎 − 𝐿𝑇𝜏,𝑎)

2.

Unlike the link flow data, the left-turning flow data contain

route choice information. Therefore, these data can introduce

additional constraints in OD matrix estimation and reduce the

impact of underdetermined problems (Mishalani, Coifman, &

Gopalakrishna, 2002).

4. Partial path flow

Previous studies that estimate OD based on traffic counts and

seed matrix have insufficient information about real-world

route choices. This lack of information may lead to an under-

determination problem, in which the OD estimates deviate

from the true values even if the derived traffic counts are rela-

tively accurate. Route choice information is important in miti-

gating such a problem (Rao et al., 2018). A typical method for

adding route choice information is utilizing probe path flow

data, which are generally used in mobile-phone- and GNSS-

data–based research (X. Yang, Lu, & Hao, 2017). Given that

probe path flow data include the complete trajectories of probe

vehicles, they can be easily embedded into the estimation

model by scaling with the penetration rate. However, in an

LPR-data–based model, the reconstructed partial path flow

data include the incomplete trajectories of vehicles. There-

fore, the relationship between the reconstructed partial path

flow and true path flow is not trivial. Some LPR-based stud-

ies assume that LPR stations can detect all original ODs, thus

the observed path is complete (Antoniou, Ben-Akiva, & Kout-

sopoulos, 2004), which they admitted is a restrictive require-

ment in the real world. In this section, we will address how

to incorporate partial path flow with incomplete trajectories.

Let 𝑓𝑟
′𝑠′ ∗
𝑖,𝜏

be a reconstructed path flow within time interval

𝜏 between OD 𝑟′ and 𝑠′, derived from the reconstructed path

data, and let 𝑓𝑟𝑠
𝑗,𝜏

be a true path flow between OD 𝑟 and 𝑠within

time interval 𝜏. We now consider the relationship between

𝑓𝑟
′𝑠′ ∗
𝑖,𝜏

and 𝑓𝑟𝑠
𝑗,𝜏

, where 𝑅∗
𝑖,𝜏

and 𝑅𝑗,𝜏 denote the correspond-

ing path trajectories. For example, let 1○, 2○, 3○, and 4○ be

four consecutive nodes, path𝑅∗
𝑖,𝜏

( 2○, 3○) be the reconstructed

trajectory, and path 𝑅𝑗,𝜏 ( 1○, 2○, 3○, 4○) be the complete true

trajectory. 𝑅𝑗,𝜏 may become 𝑅∗
𝑖,𝜏

if nodes 1○ and 4○ are mis-

detected. In this situation, the volume of 𝑓 14
𝑗,𝜏

contributes to

the volume of 𝑓 23 ∗
𝑖,𝜏

. The contribution rate from 𝑓𝑟𝑠
𝑗,𝜏

to 𝑓𝑟
′𝑠′ ∗
𝑖,𝜏

can be formulated as

Δ𝑖,𝑗,𝑟,𝑠
𝜏

=
∑
𝑁𝑑

𝑃
(
𝑁𝑑|𝑅𝑗,𝜏) ⋅ 𝑃 (

𝑅∗
𝑖,𝜏
|𝑁𝑑) (10)
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where𝑁𝑑 is the set of detected nodes of 𝑅𝑗,𝜏 , and
∑
𝑁𝑑

is the

sum over all possible detected node situations. Equation (10)

refers to the probability that only𝑁𝑑 of 𝑅𝑗,𝜏 is recorded, and

then 𝑁𝑑 is reconstructed to 𝑅∗
𝑖,𝜏

. This probability is defined

as the contribution rate from 𝑓𝑟𝑠
𝑗,𝜏

to 𝑓𝑟
′𝑠′ ∗
𝑖,𝜏

. 𝑃 (𝑁𝑑|𝑅𝑗,𝜏 ) can

be calculated by using Equation (2), whereas 𝑃 (𝑅∗
𝑖,𝜏
|𝑁𝑑) can

be calculated as

𝑃

(
𝑅∗
𝑖,𝜏
|𝑁𝑑) =

𝑃

(
𝑁𝑑|𝑅∗

𝑖,𝜏

)
⋅ 𝑃

(
𝑅∗
𝑖,𝜏

)
∑𝑁𝑅
𝑗=1 𝑃

(
𝑁𝑑|𝑅𝑗,𝜏∗) ⋅ 𝑃 (

𝑅𝑗,𝜏
∗) (11)

where 𝑃 (𝑁𝑑|𝑅𝑖,𝜏∗) and 𝑃 (𝑅𝑖,𝜏∗) can be calculated using

Equations (2) and (5), respectively. Through this equation, the

relationship between 𝑓𝑟𝑠
𝑗,𝜏

and 𝑓𝑟
′𝑠′ ∗
𝑖,𝜏

is expressed as 𝑓𝑟
′𝑠′ ∗
𝑖,𝜏

=∑
𝑗,𝑟,𝑠Δ

𝑖,𝑗,𝑟,𝑠
𝜏 ⋅ 𝑓𝑟𝑠

𝑗,𝜏
, and the item in the objective function can

be formulated as
∑
𝜏

∑
𝑖,𝑟′,𝑠′ (𝑓𝑟

′𝑠′ ∗
𝑖,𝜏

−
∑
𝑗,𝑟,𝑠Δ

𝑖,𝑗,𝑟,𝑠
𝜏 ⋅ 𝑓𝑟𝑠

𝑗,𝜏
)2. It

is worth noting that using the partial path flow incorporates a

good property in Bayesian path reconstruction method. Given

that the path flow is reconstructed based on real-world travel

data (such as travel time), the model will tend to distribute

the demand over those paths that are analogous to real-world

situations, thereby facilitating the OD estimation.

By now, four items with respect to link flow, initial OD

matrix, left-turning flow, and partial path flow are available

for the objective function, which will be integrated by differ-

ent weights. The function of these four items can be explained

as follows. 𝑞𝑟𝑠
𝜏

is a rough OD reference because the recon-

structed path flow may lose the original origin and destina-

tion (as discussed in Section 1). Therefore, this parameter is

used to avoid an extremely unreasonable solution and to pro-

vide scale information. The ground truth observations 𝑣∗
𝜏,𝑎

and

𝐿𝑇 ∗
𝜏,𝑎

can somehow offset the error in 𝑞𝑟𝑠
𝜏

. The partial path

flow (𝑓𝑟
′𝑠′ ∗
𝑖,𝜏

) can provide important route choice information.

3.2 Model formulation
Previous OD estimation studies have widely used the bilevel

model as their framework (Tavana, 2001; Wen, Gardner et al.,

2018; Zhou & Mahmassani, 2006). The upper level of this

model estimates the demand assignment matrix based on the

user equilibrium assumption (or by using a traffic simula-

tion software), whereas the lower level estimates the OD

matrix based on the calculated assignment matrix. These two

models are executed iteratively until convergence is reached.

Using this bilevel model is practical when the user equilibrium

assumption (or the traffic simulation software) corresponds

well to real-world traffic situations (Duthie, Unnikrishnan, &

Waller, 2011). Therefore, the network parameters (e.g., road

capacity) should be precalibrated before the OD estimation.

This procedure may be especially difficult to apply in new

cities with a rapidly changing traffic situation and high motor-

ization and urbanization rates. The user equilibrium assump-

tion may also not hold in such cases (Yildirimoglu & Kahra-

man, 2017). Therefore, a method that avoids the precalibration

procedure should be developed.

Given that we can partly capture the route choice infor-

mation by using LPR data, the user equilibrium assumption

can be relaxed, and consequently avoid the precalibration of

network parameters. We propose a two-step OLS estimation

model to infer the dynamic OD matrix based on the informa-

tion aggregated in Section 3.1. This model is formulated as

follows:

• 𝑃 estimation step (𝑞𝑟𝑠
𝜏

is constant):

min
𝑝𝑟𝑠
𝑗,𝜏

𝐽1 =
∑
𝜏

(
𝑤1

∑
𝑎

(𝑣∗
𝜏,𝑎

− 𝑣𝜏,𝑎)
2

+𝑤2
∑
𝑎

(
𝐿𝑇 ∗
𝜏,𝑎

− 𝐿𝑇𝜏,𝑎
)2

+𝑤3

×
∑
𝑖,𝑟

′
,𝑠
′

(
𝑓𝑟

′
𝑠
′ ∗

𝑖,𝜏
−
∑
𝑗,𝑟,𝑠

Δ𝑖,𝑗,𝑟,𝑠
𝜏

⋅ 𝑓𝑟𝑠
𝑗,𝜏

)2⎞⎟⎟⎠
⎞⎟⎟⎠
(12)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑓𝑟𝑠
𝑗,𝜏

= 𝑝𝑟𝑠
𝑗,𝜏

⋅ 𝑞𝑟𝑠
𝜏
, | ∀𝜏, 𝑟, 𝑠, 𝑗

∑
𝑗

𝑝𝑟𝑠
𝑗,𝜏

= 1, | ∀𝜏, 𝑟, 𝑠

𝑣𝜏,𝑎 =
∑
𝑟,𝑠,𝑗

𝑓 𝑟𝑠
𝑗,𝜏

⋅ 𝛿𝑟𝑠
𝑎,𝑗
, | ∀𝜏, 𝑎

𝐿𝑇𝜏,𝑎 =
∑
𝑟,𝑠,𝑗

𝑓 𝑟𝑠
𝑗,𝜏

⋅ 𝜎𝑟𝑠
𝑎,𝑗
, | ∀𝜏, 𝑎

𝑓 𝑟𝑠
𝑗,𝜏
, 𝑣𝜏,𝑎, 𝐿𝑇𝜏,𝑎, 𝑝

𝑟𝑠
𝑗,𝜏

≥ 0, | ∀𝜏, 𝑟, 𝑠, 𝑗, 𝑎

(13)

• 𝑄 estimation step (𝑝𝑟𝑠
𝑗,𝜏

is constant):

min
𝑞𝑟𝑠𝜏

𝐽2 =
∑
𝜏

(
𝑤1

∑
𝑎

(
𝑣∗
𝜏,𝑎

− 𝑣𝜏,𝑎
)2

+𝑤2
∑
𝑎

(
𝐿𝑇 ∗
𝜏,𝑎

− 𝐿𝑇𝜏,𝑎
)2

+𝑤3

×
∑
𝑖,𝑟

′
,𝑠
′

(
𝑓𝑟

′
𝑠
′ ∗

𝑖,𝜏
−
∑
𝑗,𝑟,𝑠

Δ𝑖,𝑗,𝑟,𝑠
𝜏

⋅ 𝑓𝑟𝑠
𝑗,𝜏

)2

+𝑤4
∑
𝑟,𝑠

(
𝑞𝑟𝑠
𝜏
− 𝑞𝑟𝑠
𝜏

)2))
(14)
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s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑓𝑟𝑠
𝑗,𝜏

= 𝑝𝑟𝑠
𝑗,𝜏

⋅ 𝑞𝑟𝑠
𝜏
, | ∀𝜏, 𝑟, 𝑠, 𝑗

𝑣𝜏,𝑎 =
∑
𝑟,𝑠,𝑗

𝑓 𝑟𝑠
𝑗,𝜏

⋅ 𝛿𝑟𝑠
𝑎,𝑗
, | ∀𝜏, 𝑎

𝐿𝑇𝜏,𝑎 =
∑
𝑟,𝑠,𝑗

𝑓 𝑟𝑠
𝑗,𝜏

⋅ 𝜎𝑟𝑠
𝑎,𝑗
, | ∀𝜏, 𝑎

𝑓 𝑟𝑠
𝑗,𝜏
, 𝑣𝜏,𝑎, 𝐿𝑇𝜏,𝑎, 𝑞

𝑟𝑠
𝜏

≥ 0, | ∀𝜏, 𝑟, 𝑠, 𝑗, 𝑎

(15)

where 𝑝𝑟𝑠
𝑗,𝜏

is the OD assignment proportion from demand 𝑞𝑟𝑠
𝜏

to path flow 𝑓𝑟𝑠
𝑗,𝜏

, 𝛿𝑟𝑠
𝑎,𝑗

is the typical link–path incidence, 𝜎𝑟𝑠
𝑎,𝑗

is the left-turning link–path incidence, 𝜎𝑟𝑠
𝑎,𝑗

= 1 if link 𝑎 and

the left-turning link after 𝑎 are both in path 𝑗 connected by

𝑟 and s, and 𝑤𝑖 is the weight factor that can be calibrated

by using the ideal point method of Zhou, Qin, and Mahmas-

sani (2003). Several combinations of𝑤𝑖 are initially generated

based on Latin Hypercube and are subsequently used to eval-

uate the OD demand. A quadratic function is then applied as

the surrogate function to fit the weights and the correspond-

ing OD estimation error. The optimal weights with the min-

imal OD estimation errors are selected as the final weights,

that is, 𝑤1 = 0.2, 𝑤2 = 0.5, 𝑤3 = 0.5, and 𝑤4 = 0.1. The

proposed model has two steps, namely, the assignment pro-

portion 𝑃 estimation step and the OD demand 𝑄 estimation

step, both of which are typical quadratic programming prob-

lems that can be solved by many methods (e.g., interior point

method) and are certain to converge to a globally optimal solu-

tion. The 𝑄 estimation step is similar to the aforementioned

upper level model, with the difference lying in its incorpo-

ration of partial path flow information. In the 𝑃 estimation

step, we use the link flow, left-turning flow, and partial path

flow from LPR data to infer the demand assignment propor-

tion 𝑝𝑟𝑠
𝑗,𝜏

, which relaxes the predetermined traffic assignment

assumptions. The solution method of this model is summa-

rized in Table 1.

4 MODEL VALIDATION

4.1 Validation design
To validate the proposed model, we collected the real-world

LPR data on November 11, 2013, in Langfang City, China.

The road network of Langfang is shown in Figure 2. There

are total of 100 intersections and 347 links in the road net-

work. The red sectors (circles) means there is an LPR camera

installed in this intersection direction, whereas the no circle at

each intersection indicates that no LPR system is installed in

this direction. This network had a device coverage rate (i.e.,

data penetration rate) of 53.8%, which was computed by divid-

ing the number of existing LPR devices by the total number

of devices needed to cover all intersections. The red line in

Figure 3 indicates the time-varying average recognition rate

of the LPR devices for every 30 minutes on November 11.

F I G U R E 2 Road network of Langfang City

T A B L E 1 Two-step dynamic OD estimation model solution method

Step 1: Initialization.

Starting from 𝑘 = 1, denote 𝑞𝑟𝑠
𝜏
= 𝑞𝑟𝑠

𝜏
, run the 𝑃 estimation step to obtain the assignment proportion of first iteration 𝑝𝑟𝑠

(1)

𝑗,𝜏
.

Step 2: 𝑄 estimation step.

Set 𝑝𝑟𝑠
𝑗,𝜏

= 𝑝𝑟𝑠(𝑘)
𝑗,𝜏
,∀𝜏, 𝑟, 𝑠, 𝑗. Run the 𝑄 estimation step to obtain the dynamic OD demand 𝑞𝑟𝑠

(𝑘)

𝜏
.

Step 3: 𝑃 estimation step.

Set 𝑞𝑟𝑠
𝜏
= 𝑞𝑟𝑠(𝑘)

𝜏
, ∀𝜏, 𝑟, 𝑠. Run the 𝑃 estimation step to obtain the dynamic demand assignment matrix 𝑝𝑟𝑠

(𝑘+1)

𝑗,𝜏
.

Step 4: Convergence test.

Run the 𝑄 estimation step to obtain 𝑞𝑟𝑠
(𝑘+1)

𝜏
using 𝑝𝑟𝑠

(𝑘+1)

𝑗,𝜏
. Calculate the average deviation between all 𝑞𝑟𝑠

(𝑘+1)

𝜏
and 𝑞𝑟𝑠

(𝑘)

𝜏
. If

the deviation is less than a predetermined threshold, i.e.,
1
𝑀

∑
𝑟,𝑠,𝜏

|𝑞𝑟𝑠(𝑘+1)
𝜏

−𝑞𝑟𝑠(𝑘)
𝜏

|
𝑞𝑟𝑠

(𝑘+1)
𝜏

< 𝜀, stop and let 𝑞𝑟𝑠
(𝑘+1)

𝜏
be the final

estimation OD matrix; otherwise, set 𝑘 = 𝑘 + 1 and go to Step 2.

Note:𝑀 is the total number of (𝑟, 𝑠, 𝜏) combinations, and 𝜀 is the threshold (set as 1% in this study), which can be

determined by observing the convergence curve.
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F I G U R E 3 Recognition rate of LPR devices on November 11

F I G U R E 4 Simplified road network of Langfang for the

simulation

Given that the LPR system is affected by lighting, the recog-

nition rate was relatively high at day and low at night. The

slight drop in recognition rate around 12:00 may be ascribed

to the intense illumination at noon. The average recognition

rate for the whole day was 80.3%. The blue line in the figure

denotes the time-varying network link flow, which is com-

puted as the sum of all data-available link flows recorded by

LPR devices. This flow also provides an overview of the total

number of recognized vehicles. Given that Langfang is a third-

tier city in China, its traffic volume is not too high, and some

congested links are observed during the morning and evening

peak hours (Li, Liu, & Zhang, 2018). However, most of these

links become uncongested during off-peak hours.

Given the extreme difficulty in obtaining the ground truth

OD demand in an urban road network, we cannot quantita-

tively validate the estimation results by using real-world LPR

data. Therefore, the real-world LPR data are only used for the

qualitative validation (Section 4.3.1). To quantitatively eval-

uate the proposed model, we generated a synthetic data set

based on a simplified Langfang road network (Figure 4). OD

estimation models are often built in the literature by using

synthetic data to do the validation (Rao et al., 2018; Zhou &

Mahmassani, 2007). Compared with the true network, the

simplified network omits some low-level roads. This network

contains 68 intersections and 237 links, although its LPR cam-

era layout is the same as the real-world layout. However, by

ignoring some low-level roads, a slight increase is observed

in the coverage rate of the simplified network (57.7%). Based

on the real-world link flow, we generated and fine-tuned the

synthetic OD demand by using the OD estimator in a traffic

simulation program (i.e., TransModeler). The synthetic OD

demand was used by the Lang Fang Bureau of Traffic Man-

agement and was verified to be practical for real-world anal-

ysis. We loaded the synthetic OD demand into the simplified

network by using TransModeler and set the route choice crite-

ria of drivers as purely dynamic. Specifically, these drivers are

allowed to change their routes based on their time-dependent

expected travel time. They are also assumed to know the per-

fect information. We obtained the complete trajectories of

each vehicle after running the program for a whole simulation

day. Afterward, we discarded the information of unequipped

roads, and randomly discarded some records for equipped

roads based on the recognition rate for each LPR station. The

remaining vehicle records were treated as the synthetic LPR
data set that will be used to run the proposed OD estima-

tion model. Although some previous studies assume that the

link volume is perfectly reliable (Dixon & Rilett, 2002; van

der Zijpp & Hamerslag, 1994), to be conservative, we added

5% and 10% random errors to the derived link flow and left-

turning flow, respectively. The synthesization was repeated 10

times. All following estimation results for synthesized data are

shown in average.

4.2 Validation of path reconstruction
Given the importance of the path reconstruction results in

the OD estimation, we evaluate the performance of the pro-

posed Bayesian path reconstruction model with real-world

and synthetic data. Two evaluation indicators are used. The

first indicator, completeness of reconstruction, is an amount-

based indicator that indicates how much flow can be recon-

structed. The second indicator, accuracy of reconstruction,

indicates whether the reconstructed trajectories are the same

as the complete trajectories.

4.2.1 Validation using real-world LPR data
The real-world LPR data can reflect actual route choice behav-

iors. Using these data in the validation can also justify the

applicability of the proposed path reconstruction model in

real-world situations.

The completeness of the path reconstruction is shown in

Figure 5. In this figure, the red line denotes the ground truth

link flow that can be directly derived from the LPR data,

the blue line denotes the reconstructed link flow that can

be computed as the sum of the reconstructed path flow that
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F I G U R E 5 Completeness of path reconstruction using

real-world LPR data

contains the specific link, and the green line denotes the unre-

constructed link flow that can be computed as the sum of the

raw unreconstructed path flow that contains a specific link.

We sort the link ID by the ground truth link flow. As shown

in Figure 5, the reconstructed link flow is closer to the ground

truth compared with the unreconstructed link flow. The aver-

age ratios of the unreconstructed and reconstructed link flows

to the ground truth link flow are 0.312 and 0.604, respectively,

which suggest that approximately 29.2% of the additional flow

information has been filled after the reconstruction. The vari-

ance of the reconstructed link flow curve is also highly consis-

tent with that of the ground truth curve, which implies that the

reconstructed information is more harmonious than the unre-

constructed one in terms of missing data rate. Therefore, the

scaling method can produce better results by using the recon-

structed data (e.g., the scaling of penetration rate of initial OD

demand, see Section 3.1).

The accuracy of the reconstruction is evaluated afterward.

However, given that the true complete trajectories of real-

world LPR data are unavailable, we generate a test data set

based on real-world data. We regard the existing raw trajec-

tories derived from LPR data as dummy complete trajectories

that may lack several nodes compared with the true complete

trajectories. Nevertheless, these trajectories can still reflect

some route choice behaviors. Based on the recognition rate

of the LPR system, we randomly discard several nodes from

the dummy complete trajectories and then generate the real-

world test data set for estimating the reconstruction accuracy.

This process is similar to our procedure for generating the syn-

thetic simulation data set. We run the reconstruction model

by using the real-world test data set, repair the discarded

nodes, and compare the reconstructed trajectories with the

dummy complete trajectories. A shortest path reconstruction

method and a random draw method are set as benchmarks to

compare with the Bayesian model. The shortest path method

means we use the shortest distance path as the reconstructed

path. The random draw method means every path candidate

is equally likely to be chosen as the reconstructed path. We

run these models for 30 replications and average the results

to avoid random errors. The proposed model demonstrates

a stable performance despite showing a small variance. The

accuracy of the reconstruction results is shown in Figure 6,

F I G U R E 6 Accuracy of path reconstruction using real-world

LPR data

F I G U R E 7 Completeness of path reconstruction using synthetic

LPR data

where the right axis shows the number of paths to reconstruct

and the left axis shows the successful reconstruction accuracy.

A reconstruction is considered successful if the reconstruc-

tion path is exactly the same as the initial path. Our proposed

model demonstrates a superior performance across all scenar-

ios compared with the benchmarks. In line with our intuition,

the number of missing nodes increases along with a decreas-

ing reconstruction accuracy. Given that the test data set has

been generated from raw trajectories that are always short and

incomplete, the maximum number of missing nodes is 4. Most

path reconstruction problems have only one missing node that

leads to an artificial impression of high reconstruction accu-

racy. The real-world test data achieve a reconstruction accu-

racy of 96.0%. The following validation using synthetic data

will properly show the model performance.

4.2.2 Validation using synthetic LPR data
Given that the complete trajectory of each vehicle is known in

the synthetic data set, we can directly evaluate the path recon-

struction performance of the proposed model.

As discussed in Section 4.2.1, we initially evaluate the com-

pleteness of path reconstruction (Figure 7), and the results are

similar to those obtained by using real-world LPR data. Com-

pared with the unreconstructed link flow, the reconstructed

link flow is closer to the ground truth and is more consistent

with respect to its change trend. The average ratios of the unre-

constructed and reconstructed link flows to the ground truth

link flow are 0.337 and 0.642, respectively, thereby suggesting
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F I G U R E 8 Accuracy of path reconstruction using synthetic LPR

data

that approximately 30.5% of the additional flow information

has been repaired after the reconstruction.

Given that the true complete trajectories are known, we

can directly test the reconstruction accuracy of the proposed

model by using synthetic LPR data. The validation results

are shown in Figure 8. The maximum number of missing

nodes increases to 9, which shows a more diverse situation in

path reconstruction problems. Meanwhile, the reconstruction

accuracy decreases along with an increasing number of miss-

ing nodes. Our model outperforms both benchmarks when

the number of missing nodes is less than 5. When this num-

ber increases, the number of possible path candidates expo-

nentially increases, thereby making the true path untraceable.

However, given the small number of paths with more than 5

missing nodes, the total reconstruction accuracy can reach as

high as 62.3%, and this value objectively reflects the perfor-

mance of our proposed Bayesian path reconstruction model.

Future studies may explore more advanced methods for solv-

ing the path reconstruction problem in terms of high missing

nodes scenarios.

4.3 Validation of OD demand estimation
We divide each day into 48 time intervals with 30 min-

utes each given that most trips can be completed within 30

minutes. The time interval is seen as the minimum time unit

for OD estimation. This is actually a quasi-dynamic modeling

framework, which is widely used in previous study (Bierlaire

& Crittin, 2004; Zhou & Mahmassani, 2006). Future research

can be done to explore the pure-dynamic framework.

Two definitions of OD have been adopted in the literature.

The first definition, which describes OD as a road network

node, agrees with the transportation network model and can

be conveniently used for modeling purposes. The second def-

inition, which describes OD as a block of land (e.g., a com-

munity or traffic analysis zone), is in line with reality and can

be conveniently used for transportation planning purposes. In

this study, we first define ODs as network nodes for modeling.

In the result-display section, we aggregate the node-based OD

flow into block-based OD flow to show the estimation results.

In this way, we can not only easily process the model but also

export the applicable OD demand for transportation planning.

Because we know how the TransModeler assigns block-based

OD to the nearby intersections, we can do the inverse transfor-

mation to aggregate node-based OD to block-based OD. Thus,

the transform between node-based and block-based OD will

not produce error to the estimation accuracy in our synthetic

validation.

We divide the urban area into 44 blocks according to the

traffic analysis zones, and each of these blocks can be consid-

ered a block-based origin or destination.

4.3.1 Qualitative validation using real-world
LPR data
Given that information on the ground truth OD demand is

unavailable, we use real-world LPR data for the qualitative
model validation. That is, we will check whether the estimated

OD patterns from real-world LPR data are consistent with the

context of the corresponding land use, urban design, and traf-

fic conditions. The estimated OD demand distribution during

morning peak (7:00–9:00), midday off-peak (11:00–13:00),

and evening peak hours (17:00–19:00) are plotted in Figure 9.

The areas of circles in this figure denote the OD flow (veh/h)

of a specific block, the gray part denotes trip generation, and

the blue part denotes trip attraction. The number in each block

represents the block ID. Take block 10 as an example. The OD

distribution of this block shows obvious commute character-

istics. Specifically, during morning peak hours, the trip attrac-

tions in this block is higher than the trip generations, but the

opposite is observed during evening peak hours because block

10 acts as the main artery in an economic development zone

where many people work but few people live. Meanwhile,

blocks 15 to 20 show a higher OD demand compared with the

other blocks. These zones are located in the central area of a

city with a large population and mixed residential and com-

mercial areas. Therefore, these blocks have a relatively high

traffic flow and a balanced trip generation and attraction. The

OD flow in block 37 is also relatively high because of its loca-

tion close to the freeway entrance. Therefore, many vehicles

pass through this block every day to enter or leave the city.

In terms of temporal dimension, the total level of OD

demand during midday off-peak hours is less than that dur-

ing morning and evening peak hours, and this observation is

in line with our intuition. The commute characteristic is not

obvious in many blocks because Langfang is a third-tier city in

China. For the convenience of citizens, no apparent boundary

can be observed between the living and working areas from

an urban planning perspective.

In sum, the OD demand estimated by real-world LPR data

is in line with our expectations and qualitatively highlights the

effectiveness of our proposed OD estimation model.
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(a) Morning peak hours (7:00–9:00)  

(b) Midday off-peak hours (11:00–13:00)

(c) Evening peak hours (17:00–19:00)

F I G U R E 9 Estimated OD demand distribution using real-world

LPR data

4.3.2 Quantitative validation using synthetic
LPR data
Given that the complete true trajectories of all vehicles are

known, we quantitatively validate the performance of our pro-

posed model by using synthetic LPR data. We use the follow-

ing benchmark models for the comparison:

• Benchmark 1: The naïve trajectory count (NTC) model

The NTC model (Ashok, 1996) directly extracts OD

demand from raw LPR data. The OD demand between ori-

gin r and destination s can be formulated as 𝑞𝑟𝑠
𝜏

= 𝛼𝜏 ⋅ 𝑥𝑟𝑠𝜏 ,

where 𝑥𝑟𝑠
𝜏

is the number trajectories with origin r and desti-

nation s, and 𝛼𝜏 is the expansion factor that accounts for the

unrecognized vehicles. In practice, a vehicle may have several

trajectories in a single day. Therefore, a maximum dwell time

of 30 minutes is used for this benchmark model to split the tra-

jectories. 𝛼𝜏 is set equal to its value calculated in Section 3.1.

• Benchmark 2: Bilevel OD estimation model

The bilevel OD estimation model (Lundgren & Peterson,

2008; Tavana, 2001; Tavana & Mahmassani, 2001) is often

used when the network link flow is available. The upper level

minimizes the deviation between the overserved and esti-

mated data, whereas the lower level estimates the path choice

fraction under the user equilibrium constraint given a specific

OD matrix. Previous studies have mostly used link flow and

historical OD demand in their objective functions. Therefore,

we follow the same framework and include these two items in

the bilevel OD benchmark model. The historical OD matrix

for this model is set equal to the initial OD demand derived

in Section 3.1. The formulation of this model is illustrated in

Appendix B.

We choose the above benchmark models for three reasons.

First, benchmark 1 is a model-free method typically used in

the industry. Many data analysts without traffic knowledge

use the naïve method to count the rough OD demand, which

in turn can provide a lower bound for accuracy. Second, the

bilevel model that uses link flow and historical OD demand

as inputs is a classical formulation that has been used as a

benchmark in recent studies (Antoniou et al., 2016; Walpen,

Mancinelli, & Lotito, 2015). Third, although the bilevel model

has other advanced extensions, these extensions require addi-

tional information as inputs that may not be directly available

in LPR data.

We evaluate the estimation accuracy of the proposed model

based on root mean square error (RMSE) and MAPE, which

are computed as

RMSE =

√√√√∑
𝑟,𝑠,𝑟≠𝑠

(
𝑞𝑟𝑠
𝜏
− 𝑞𝑟𝑠
𝜏

)2
𝑁b ×

(
𝑁b − 1

) and (16)
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(a) Morning peak hours (7:00–9:00)

(b) Midday off-peak hours (11:00–13:00)

(c) Evening peak hours (17:00–19:00)

F I G U R E 1 0 Estimation results of the benchmark and two-step

OLS models using synthetic LPR data

MAPE =
(∑
𝑟,𝑠,𝑟≠𝑠

||𝑞𝑟𝑠𝜏 − 𝑞𝑟𝑠
𝜏
|| ∕𝑞𝜏)

𝑁b ×
(
𝑁b − 1

) ⋅ 100% (17)

where 𝑞𝑟𝑠
𝜏

is the estimated OD flow from block 𝑟 to 𝑠 within

time interval 𝜏, 𝑞𝑟𝑠
𝜏

is the corresponding true OD flow (syn-

thetic OD flow), 𝑞𝜏 is the average true OD flow within time

interval 𝜏,𝑁b is the number of blocks that can be regarded as

ODs, and𝑁b × (𝑁b − 1) is the total number of OD pairs.

A series of numerical tests is performed to test the conver-

gence of the proposed two-step OLS model. The test results

reveal that around 40 iterations are enough to make the algo-

rithm reach convergence. The estimation results for the morn-

ing peak (7:00–9:00), midday off-peak (11:00–13:00), and

evening peak hours (17:00–19:00) are presented in Figure 10.

The left two graphs present the results of the benchmark mod-

els, whereas the right graph presents the results of the pro-

posed two-step OLS model. These figures show that the two-

step OLS model obtains better results than both benchmark

models for all three periods and demonstrates slight differ-

ences in its estimation accuracy across these periods. Specif-

ically, the results for the morning and evening peak hours are

better than those for the midday off-peak hours. Some extreme

values located far from the dashed line can also be observed

in the graph. However, these poor estimates, which are gener-

ally for OD pairs with long distance, are reasonable because

a farther OD distance indicates that less information can be

obtained from the LPR devices, thereby leading to poor esti-

mation results.

F I G U R E 1 1 RMSE of the benchmark and two-step OLS models

F I G U R E 1 2 MAPE of benchmark models and the two-step OLS

model

The RMSE and MAPE across different time intervals are

plotted in Figures 11 and 12 along with the standard error of

10 replications. The proposed two-step OLS model obtains a

lower RMSE and MAPE compared with the benchmark mod-

els for nearly all 48 time intervals. In most time intervals, the

curve of the proposed model is twice greater than the stan-

dard deviation of the baseline models, thereby indicating that

this model has a significantly superior performance compared

with the benchmarks. Meanwhile, the bilevel model (bench-

mark 2) outperforms the NTC model (benchmark 1). These

benchmark models have average RMSEs of 2.54 veh/30 min

and 3.27 veh/30 min, respectively, which are higher than that

of the proposed two-step OLS model (2.05 veh/30 min). In

terms of MAPE, the weighted (by the quantity of OD flow)

average MAPEs of the first and second benchmark models

are 55.93% and 41.78%, respectively, which are both higher

than that of the two-step OLS model (32.73%). Therefore, we

report a decrease of around 10% in the relative error.

The RMSE changes along with the total link flow in the

network because this parameter is a quantity-related absolute

error index. The RMSE difference between the benchmark

models and the proposed model is relatively small at night

and relatively high during the day. Meanwhile, MAPE is a

relative error index that remains relatively harmonious for the

daytime time intervals, thereby suggesting that the proposed

model remains stable across different traffic flow scenarios.

Interestingly, the MAPE of the proposed model is relatively

large late at night (0:00–6:00) because of the low recognition

rate of LPR devices during this time (Figure 4). These devices
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F I G U R E 1 3 MAPE of different LPR coverage rates

can provide less information for running the model, which in

turn leads to a relatively high MAPE.

In terms of MAPE, the proposed model outperforms the

bilevel model by only about 5% to 10%. However, the bilevel

model requires a precalibration of the network parameters

(e.g., link impedance function). In this study, we provide the

bilevel model with a reasonable set of network parameters

that are derived from a simulation software. These parame-

ters may require great effort to obtain in real-world situations.

However, the proposed two-step OLS model does not require a

precalibration of the network parameters, thereby making this

model highly practical in developing cities with high motor-

ization and urbanization rates.

4.3.3 Impact of different LPR coverage rates
Many studies have shown that the estimation quality of the

LPR data-based method is dependent on the LPR coverage

rates (Rao et al., 2018; Zhou & Mahmassani, 2006). Testing

of different LPR coverage rates can demonstrate (1) whether

the method can be applied to a large-scale network with a low-

density LPR system and (2) the minimal requirement for data

sources. To generate synthetic LPR data with different cov-

erage rates, we randomly discard the LPR records of some

intersections, yielding a data set of seven different coverage

rates: 90%, 80%, 70%, 60%, 50%, 40%, and 30%. The recog-

nition rate of all LPR devices is set as the average value of

those in the Lang Fang case, that is, 80.3%. Figure 13 presents

the results at different coverage rates, where one point repre-

sents the average MAPE from 8:00 to 22:00. We find that the

MAPE of all methods decreases with an increase in the cover-

age rates. The change is relatively smooth when the coverage

rate is between 90% and 60%. However, when the sampling

rate is less than 50%, the MAPE becomes larger than 40%

and increases rapidly. Thus, to achieve a reliable OD demand

estimation, the LPR coverage rate should be above 50%. This

corresponds with previous research (Rao et al., 2018). Fur-

thermore, in all testing scenarios, the proposed method can

outperform two benchmark models.

5 CONCLUSION AND DISCUSSION

This article proposes a hybrid framework for dynamic

OD demand estimation that fully exploits the information

available in LPR data. The LPR data used in this study

contain information regarding the passing time, location, and

lanes occupied by vehicles. Information sources other than

LPR data are not required in this model. A Bayesian path

reconstruction model is initially developed to replenish the

information loss resulting from the recognition error and

insufficient penetration rate of the LPR system. Based on

the reconstructed data, we derive the link flows, initial OD

demand, left-turning flows, and partial path flows to increase

the amount of available information from LPR data, given

that some information is not directly available in the raw data

set. Afterward, we formulate a two-step OLS OD estimation

model by using all the above information. The proposed

framework is qualitatively validated by using real-world LPR

data collected from Langfang City, China, and quantitatively

validated by using synthesized simulation data in a simplified

road network in Langfang. Results show the proposed model

can estimate well the OD demand distribution and shows

significant improvements in estimation accuracy compared

with the NTC benchmark model. However, when compared

with the bilevel OD estimation model, despite showing only

slight improvements in accuracy, the proposed two-step OLS

model does not require the precalibration of road network

parameters, thereby making this model more practical in

cities where road network parameters are difficult to calibrate.

Although this study obtains promising results, some of its

limitations warrant further exploration in future work. First,

this study shows that to obtain reliable OD demand estimation

results, the LPR coverage rate should be above 50% (when

the LPR recognition rate is 80%). However, installing a large

number of LPR devices in large cities can be cost inefficient

and impractical, and some cities may have lower LPR recog-

nition rates compared with others. Therefore, our method may

be more practical in developing cities where LPR systems

have a relatively high coverage rate and where historical OD

demand is not available. For large-scale cities with low LPR

coverage rates, two possible solutions are applicable: (1) If

the LPR devices are uniformly distributed, the network may

be simplified by eliminating some low-level roads without

LPR devices, thus improving the coverage rate. This approach

has been used in other studies (e.g., Osorio, 2019). (2) If

the LPR devices are concentrated in some specific regions

(instead of uniformly distributed), the model can be applied

in the areas with high coverage rates. For areas with low cov-

erage rates, the first approach can be applied to obtain a rough

estimation.

Second, traffic volume may also influence the OD estima-

tion results as revealed in previous studies (Frederix, Viti,

& Tampère, 2013; Shafiei, Saberi, Zockaie, & Sarvi, 2017).
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Such influence mainly comes from the assumed traffic assign-

ment criteria or from the relationship between OD flow and

link flow. Given that no preassumed traffic assignment crite-

ria are used in this work, our model may be able to avoid the

impact of traffic congestion. The estimated MAPE presented

in Figure 12 can verify this inference to some extent. The

estimated MAPE is relatively harmonious at daytime despite

the dynamic changes in traffic volumes during this period.

To systematically prove this property of the proposed model,

future studies can adjust the scale of the input OD matrix

in their traffic simulation software and then test different

scenarios.

Third, privacy poses an obstacle in the application of the

proposed model in traffic planning. Not all cities have accessi-

ble LPR data. Given that the proposed model does not require

the “true” license plate number of vehicles, any identical

index for vehicles (e.g., hash from the original license plate

number) can be used. So, the privacy issues may be relieved

if the hashed license plate number can be provided.

In the field of OD estimation, the classic volume-based

methods depend primarily on loop-detector data. LPR data

contain not only link volume information but also partial path

information. This gives LPR data the potential to become the

mainstream data for OD estimation in the future. Although

the coverage rate of loop detectors in the United States may

be higher than that of LPR, in China and other Asian coun-

tries (e.g., Singapore), LPR is becoming more and more pop-

ular and has a higher penetration rate due to its use in law

enforcement (Mo et al., 2017). There is also much evidence of

increasing LPR deployment in the United States (Lum et al.,

2019). Therefore, we expect that LPR data can replace previ-

ous data sources in the future.

Furthermore, LPR is an automatic vehicle identification

(AVI) technique. The proposed method is a general frame-

work for all AVI data sources (e.g. radio frequency identi-

fication [RFID] and near field communication [NFC]). AVI

will be the major monitoring system for developing smart

cities and connected autonomous vehicles (CAV) and is thus

expected to become popular in the future. Our method may

play a more significant role at that time.
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APPENDIX A

Link travel time estimation method for unequipped
links
Based on the link impedance function proposed by the Bureau

of Public Roads (BPR), we model the link travel time as

𝑦𝑎 = 𝐹𝑇𝑎 ×

(
1 + 𝛼𝑎

(
𝑥𝑎

𝐶𝑎

)𝛽)
(A1)

where 𝑦𝑎 is the travel time of link 𝑎, 𝑥𝑎 is the correspond-

ing link flow, 𝐹𝑇𝑎 is the free-flow travel time of link 𝑎, 𝐶𝑎
is the effective capacity of link 𝑎, 𝛼𝑎 is the link-dependent

parameter, and 𝛽 is the global parameter. We assume that the

free-flow travel time is proportional to the length of the link

and treat 𝑦𝑎 as a random variable. Then, Equation (A1) can be

rewritten as

𝑦𝑎 = 𝛾𝑎𝑙𝑎 ×
(
1 + 𝜑𝑎𝑥𝑎𝛽

)
+ 𝜀𝑎 (A2)

where 𝛾𝑎 is the parameter that describes the relationship

between link length 𝑙𝑎 and free-flow travel time 𝐹𝑇𝑎, 𝜑𝑎 is

the parameter that contains 𝛼𝑎 and 𝐶𝑎, and 𝜀𝑎 is the random

error that is assumed to be normally distributed with an expec-

tation of 0 and a standard deviation of 𝜎𝑎 (i.e., 𝜀 ∼ 𝑁(0, 𝜎𝑎2)).
Based on the numerical test results obtained using real-world

data, link travel time and link flow show a basic linear rela-

tionship (i.e., 𝛽 = 1). This may be because the research area

is a developing city with a moderate traffic volume (Li et al.,

2018). Thus, we set 𝛽 = 1, and this parameter can be adjusted

to tune real-world traffic situations.

Algorithm 2. Unequipped link travel time estimation
model

1: For each link a that belongs to unequipped link set do 
2:     find the nearest  equipped links with the same road hierarchy 
3: For each link b belonging to the extracted  equipped links do
4:         Estimate  and  using the least square estimation method. Estimate  using the standard deviation 

          of travel time samples 
5: end for 
6: = ⁄

7: = ⁄

8: = ⁄

9:    Input = ⁄  to generate enough travel time samples for unequipped links using Eq. (A2)

Furthermore, the different forms of link impedance func-

tion can also be applied given the traffic conditions. The rela-

tionship between link travel time and link flow can be plotted

based on LPR data by trying to fit the relationship with dif-

ferent 𝛽 values and then choosing the best one.

For equipped links (with LPR data records), 𝜑𝑎 and 𝛾𝑎 can

be estimated by using travel time and link flow samples via a

simple least square estimation (LSE) method. 𝜎𝑎 can also be

estimated by using the standard deviation of the travel time

samples. The unequipped link travel time estimation model is

shown in Algorithm 2. According to the numerical test results,

𝜑𝑎, 𝛾𝑎, and 𝜎𝑎 of link 𝑎 and link flow 𝑥𝑎 are similar to those of

the surrounding links within the same road hierarchy. There-

fore, we can use the average value of the parameters of the

equipped links to estimate the parameters of the unequipped

links. 𝑛𝑒𝑞 = 6 is used empirically in this study. The value of

this parameter can be adjusted depending on the road network

conditions. Equipped links with insufficient travel time sam-

ples (e.g., in the midnight time interval) can also be supplied

with synthesized samples by using Algorithm 2.

APPENDIX B

Formulation of benchmark 2
The bilevel benchmark model can be formulated as

• upper level model (𝑝𝑟𝑠
𝑗,𝜏

is constant):

min
𝑞𝑟𝑠𝜏

𝐽3 =
∑
𝜏

(
𝑤′

1

∑
𝑎

(𝑣∗
𝜏,𝑎

− 𝑣𝜏,𝑎)
2 +𝑤′

2

∑
𝑟,𝑠

(𝑞𝑟𝑠
𝜏
− 𝑞𝑟𝑠

𝜏
)2
)
(B1)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑓𝑟𝑠
𝑗,𝜏

= 𝑝𝑟𝑠
𝑗,𝜏

⋅ 𝑞𝑟𝑠
𝜏
, | ∀𝜏, 𝑟, 𝑠, 𝑗

𝑣𝜏,𝑎 =
∑
𝑟,𝑠,𝑗

𝑓 𝑟𝑠
𝑗,𝜏

⋅ 𝛿𝑟𝑠
𝑎,𝑗
, | ∀𝜏, 𝑎

𝑓 𝑟𝑠
𝑗,𝜏
, 𝑣𝜏,𝑎, 𝑞

𝑟𝑠
𝜏

≥ 0, | ∀𝜏, 𝑟, 𝑠, 𝑗, 𝑎

(B2)

• lower level model (𝑞𝑟𝑠
𝜏

is constant):

min𝑝𝑟𝑠
𝑗,𝜏
𝐽4 =

∑
𝜏,𝑎

𝑣𝜏,𝑎

∫
0
𝑐𝜏,𝑎 (𝑢) du (B3)
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s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑓𝑟𝑠
𝑗,𝜏

= 𝑝𝑟𝑠
𝑗,𝜏

⋅ 𝑞𝑟𝑠
𝜏
, | ∀𝜏, 𝑟, 𝑠, 𝑗

𝑣𝜏,𝑎 =
∑
𝑟,𝑠,𝑗

𝑓 𝑟𝑠
𝑗,𝜏

⋅ 𝛿𝑟𝑠
𝑎,𝑗
, | ∀𝜏, 𝑎

∑
𝑗

𝑝𝑟𝑠
𝑗,𝜏

= 1, | ∀𝜏, 𝑟, 𝑠

𝑓 𝑟𝑠
𝑗,𝜏
, 𝑣𝜏,𝑎, 𝑝

𝑟𝑠
𝑗,𝜏

≥ 0, | ∀𝜏, 𝑟, 𝑠, 𝑗, 𝑎

, (B4)

where 𝑐𝜏,𝑎 is the link impedance function for link 𝑎within time

interval 𝜏. We use the BPR function form for 𝑐𝜏,𝑎 in this study.

All other variables have the same notations as the formula-

tion presented in Section 3.2. 𝑞𝑟𝑠
𝜏

is the set equal to the initial

OD matrix obtained in Section 3.1. It is worth noting that the

parameters for 𝑐𝜏,𝑎 must be thoroughly calibrated before run-

ning this model. This model is solved by using the iterative

algorithm proposed by Zhou and Mahmassani (2006).


